Eigen
EigenKernelComputation
Bases: AbstractKernelComputation
Eigen kernel computation class. Kernels who operate on an eigen-decomposed structure should use this computation object.
gram
For a given kernel, compute Gram covariance operator of the kernel function
on an input matrix of shape (N, D)
.
Parameters:
-
kernel
(K
) βthe kernel function.
-
x
(Num[Array, 'N D']
) βthe inputs to the kernel function of shape
(N, D)
.
Returns:
-
Dense
βThe Gram covariance of the kernel function as a linear operator.
cross_covariance
For a given kernel, compute the cross-covariance matrix on an a pair
of input matrices with shape (N, D)
and (M, D)
.
Parameters:
-
kernel
(K
) βthe kernel function.
-
x
(Num[Array, 'N D']
) βthe first input matrix of shape
(N, D)
. -
y
(Num[Array, 'M D']
) βthe second input matrix of shape
(M, D)
.
Returns:
-
Float[Array, 'N M']
βThe computed cross-covariance of shape
(N, M)
.
diagonal
For a given kernel, compute the elementwise diagonal of the
NxN gram matrix on an input matrix of shape (N, D)
.
Parameters:
-
kernel
(K
) βthe kernel function.
-
inputs
(Num[Array, 'N D']
) βthe input matrix of shape
(N, D)
.
Returns:
-
Diagonal
βThe computed diagonal variance as a
Diagonal
linear operator.