Base
AbstractKernel
Bases: Module
Base kernel class.
This class is the base class for all kernels in GPJax. It provides the basic functionality for evaluating a kernel function on a pair of inputs, as well as the ability to combine kernels using addition and multiplication.
The class also provides a method for slicing the input matrix to select the relevant columns for the kernel's evaluation.
Parameters:
-
active_dims
(Union[list[int], slice, None]
, default:None
) βthe indices of the input dimensions that are active in the kernel's evaluation, represented by a list of integers or a slice object. Defaults to a full slice.
-
n_dims
(Union[int, None]
, default:None
) βthe number of input dimensions of the kernel.
-
compute_engine
(AbstractKernelComputation
, default:DenseKernelComputation()
) βthe computation engine that is used to compute the kernel's cross-covariance and gram matrices. Defaults to DenseKernelComputation.
__call__
abstractmethod
Evaluate the kernel on a pair of inputs.
Parameters:
-
x
(Num[Array, ' D']
) βthe left hand input of the kernel function.
-
y
(Num[Array, ' D']
) βThe right hand input of the kernel function.
Returns:
-
ScalarFloat
βThe evaluated kernel function at the supplied inputs.
cross_covariance
Compute the cross-covariance matrix of the kernel.
Parameters:
-
x
(Num[Array, 'N D']
) βthe first input matrix of shape
(N, D)
. -
y
(Num[Array, 'M D']
) βthe second input matrix of shape
(M, D)
.
Returns:
-
Float[Array, 'N M']
βThe cross-covariance matrix of the kernel of shape
(N, M)
.
gram
Compute the gram matrix of the kernel.
Parameters:
-
x
(Num[Array, 'N D']
) βthe input matrix of shape
(N, D)
.
Returns:
-
LinearOperator
βThe gram matrix of the kernel of shape
(N, N)
.
diagonal
Compute the diagonal of the gram matrix of the kernel.
Parameters:
-
x
(Num[Array, 'N D']
) βthe input matrix of shape
(N, D)
.
Returns:
-
Float[Array, ' N']
βThe diagonal of the gram matrix of the kernel of shape
(N,)
.
slice_input
Slice out the relevant columns of the input matrix.
Select the relevant columns of the supplied matrix to be used within the kernel's evaluation.
Parameters:
-
x
(Float[Array, '... D']
) βthe matrix or vector that is to be sliced.
Returns:
-
Float[Array, '... Q']
βThe sliced form of the input matrix.
__add__
Add two kernels together. Args: other (AbstractKernel): The kernel to be added to the current kernel.
Returns:
-
AbstractKernel
(AbstractKernel
) βA new kernel that is the sum of the two kernels.
__mul__
Multiply two kernels together.
Parameters:
-
other
(AbstractKernel
) βThe kernel to be multiplied with the current kernel.
Returns:
-
AbstractKernel
(AbstractKernel
) βA new kernel that is the product of the two kernels.
Constant
Bases: AbstractKernel
A constant kernel. This kernel evaluates to a constant for all inputs. The scalar value itself can be treated as a model hyperparameter and learned during training.
cross_covariance
Compute the cross-covariance matrix of the kernel.
Parameters:
-
x
(Num[Array, 'N D']
) βthe first input matrix of shape
(N, D)
. -
y
(Num[Array, 'M D']
) βthe second input matrix of shape
(M, D)
.
Returns:
-
Float[Array, 'N M']
βThe cross-covariance matrix of the kernel of shape
(N, M)
.
gram
Compute the gram matrix of the kernel.
Parameters:
-
x
(Num[Array, 'N D']
) βthe input matrix of shape
(N, D)
.
Returns:
-
LinearOperator
βThe gram matrix of the kernel of shape
(N, N)
.
diagonal
Compute the diagonal of the gram matrix of the kernel.
Parameters:
-
x
(Num[Array, 'N D']
) βthe input matrix of shape
(N, D)
.
Returns:
-
Float[Array, ' N']
βThe diagonal of the gram matrix of the kernel of shape
(N,)
.
slice_input
Slice out the relevant columns of the input matrix.
Select the relevant columns of the supplied matrix to be used within the kernel's evaluation.
Parameters:
-
x
(Float[Array, '... D']
) βthe matrix or vector that is to be sliced.
Returns:
-
Float[Array, '... Q']
βThe sliced form of the input matrix.
__add__
Add two kernels together. Args: other (AbstractKernel): The kernel to be added to the current kernel.
Returns:
-
AbstractKernel
(AbstractKernel
) βA new kernel that is the sum of the two kernels.
__mul__
Multiply two kernels together.
Parameters:
-
other
(AbstractKernel
) βThe kernel to be multiplied with the current kernel.
Returns:
-
AbstractKernel
(AbstractKernel
) βA new kernel that is the product of the two kernels.
__call__
Evaluate the kernel on a pair of inputs.
Parameters:
-
x
(Float[Array, ' D']
) βThe left hand input of the kernel function.
-
y
(Float[Array, ' D']
) βThe right hand input of the kernel function.
Returns:
-
ScalarFloat
(ScalarFloat
) βThe evaluated kernel function at the supplied inputs.
CombinationKernel
Bases: AbstractKernel
A base class for products or sums of MeanFunctions.
cross_covariance
Compute the cross-covariance matrix of the kernel.
Parameters:
-
x
(Num[Array, 'N D']
) βthe first input matrix of shape
(N, D)
. -
y
(Num[Array, 'M D']
) βthe second input matrix of shape
(M, D)
.
Returns:
-
Float[Array, 'N M']
βThe cross-covariance matrix of the kernel of shape
(N, M)
.
gram
Compute the gram matrix of the kernel.
Parameters:
-
x
(Num[Array, 'N D']
) βthe input matrix of shape
(N, D)
.
Returns:
-
LinearOperator
βThe gram matrix of the kernel of shape
(N, N)
.
diagonal
Compute the diagonal of the gram matrix of the kernel.
Parameters:
-
x
(Num[Array, 'N D']
) βthe input matrix of shape
(N, D)
.
Returns:
-
Float[Array, ' N']
βThe diagonal of the gram matrix of the kernel of shape
(N,)
.
slice_input
Slice out the relevant columns of the input matrix.
Select the relevant columns of the supplied matrix to be used within the kernel's evaluation.
Parameters:
-
x
(Float[Array, '... D']
) βthe matrix or vector that is to be sliced.
Returns:
-
Float[Array, '... Q']
βThe sliced form of the input matrix.
__add__
Add two kernels together. Args: other (AbstractKernel): The kernel to be added to the current kernel.
Returns:
-
AbstractKernel
(AbstractKernel
) βA new kernel that is the sum of the two kernels.
__mul__
Multiply two kernels together.
Parameters:
-
other
(AbstractKernel
) βThe kernel to be multiplied with the current kernel.
Returns:
-
AbstractKernel
(AbstractKernel
) βA new kernel that is the product of the two kernels.
__call__
Evaluate the kernel on a pair of inputs.
Parameters:
-
x
(Float[Array, ' D']
) βThe left hand input of the kernel function.
-
y
(Float[Array, ' D']
) βThe right hand input of the kernel function.
Returns:
-
ScalarFloat
(ScalarFloat
) βThe evaluated kernel function at the supplied inputs.