Eigen
gpjax.kernels.computations.eigen
Kernel = tp.TypeVar('Kernel', bound='gpjax.kernels.base.AbstractKernel')
module-attribute
EigenKernelComputation
dataclass
Bases: AbstractKernelComputation
Eigen kernel computation class. Kernels who operate on an eigen-decomposed structure should use this computation object.
gram(kernel: Kernel, x: Num[Array, 'N D']) -> LinearOperator
Compute Gram covariance operator of the kernel function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kernel |
AbstractKernel
|
the kernel function. |
required |
x |
Num[Array, 'N N']
|
The inputs to the kernel function. |
required |
Returns
LinearOperator: Gram covariance operator of the kernel function.
diagonal(kernel: Kernel, inputs: Num[Array, 'N D']) -> Diagonal
For a given kernel, compute the elementwise diagonal of the NxN gram matrix on an input matrix of shape NxD.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kernel |
AbstractKernel
|
the kernel function. |
required |
inputs |
Float[Array, 'N D']
|
The input matrix. |
required |
Returns
Diagonal: The computed diagonal variance entries.
cross_covariance(kernel: Kernel, x: Num[Array, 'N D'], y: Num[Array, 'M D']) -> Float[Array, 'N M']
Compute the cross-covariance matrix.
For an and pair of matrices, evaluate the cross-covariance matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kernel |
Kernel
|
the kernel function. |
required |
x |
Num[Array, 'N D']
|
The input matrix. |
required |
y |
Num[Array, 'M D']
|
The input matrix. |
required |
Returns:
Name | Type | Description |
---|---|---|
_type_ |
Float[Array, 'N M']
|
description |