Base
gpjax.kernels.computations.base
Kernel = tp.TypeVar('Kernel', bound='gpjax.kernels.base.AbstractKernel')
module-attribute
AbstractKernelComputation
dataclass
Abstract class for kernel computations.
gram(kernel: Kernel, x: Num[Array, 'N D']) -> LinearOperator
Compute Gram covariance operator of the kernel function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kernel |
AbstractKernel
|
the kernel function. |
required |
x |
Num[Array, 'N N']
|
The inputs to the kernel function. |
required |
Returns
LinearOperator: Gram covariance operator of the kernel function.
cross_covariance(kernel: Kernel, x: Num[Array, 'N D'], y: Num[Array, 'M D']) -> Float[Array, 'N M']
abstractmethod
For a given kernel, compute the NxM gram matrix on an a pair of input matrices with shape NxD and MxD.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kernel |
AbstractKernel
|
the kernel function. |
required |
x |
Num[Array, 'N D']
|
The first input matrix. |
required |
y |
Num[Array, 'M D']
|
The second input matrix. |
required |
Returns
Float[Array, "N M"]: The computed cross-covariance.
diagonal(kernel: Kernel, inputs: Num[Array, 'N D']) -> Diagonal
For a given kernel, compute the elementwise diagonal of the NxN gram matrix on an input matrix of shape NxD.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kernel |
AbstractKernel
|
the kernel function. |
required |
inputs |
Float[Array, 'N D']
|
The input matrix. |
required |
Returns
Diagonal: The computed diagonal variance entries.