Skip to content

Graph

gpjax.kernels.non_euclidean.graph

tfb = tfp.bijectors module-attribute
GraphKernel dataclass

Bases: AbstractKernel

The Matérn graph kernel defined on the vertex set of a graph.

A Matérn graph kernel defined on the vertices of a graph. The key reference for this object is borovitskiy et. al., (2020).

Parameters:

Name Type Description Default
laplacian Float[Array]

An N×NN \times N matrix representing the Laplacian matrix of a graph.

static_field(None)
active_dims: Optional[List[int]] = static_field(None) class-attribute instance-attribute
ndims property
spectral_density: Optional[tfd.Distribution] property
laplacian: Union[Num[Array, 'N N'], None] = static_field(None) class-attribute instance-attribute
lengthscale: ScalarFloat = param_field(jnp.array(1.0), bijector=tfb.Softplus()) class-attribute instance-attribute
variance: ScalarFloat = param_field(jnp.array(1.0), bijector=tfb.Softplus()) class-attribute instance-attribute
smoothness: ScalarFloat = param_field(jnp.array(1.0), bijector=tfb.Softplus()) class-attribute instance-attribute
eigenvalues: Union[Float[Array, 'N 1'], None] = static_field(None) class-attribute instance-attribute
eigenvectors: Union[Float[Array, 'N N'], None] = static_field(None) class-attribute instance-attribute
num_vertex: Union[ScalarInt, None] = static_field(None) class-attribute instance-attribute
compute_engine: AbstractKernelComputation = static_field(EigenKernelComputation(), repr=False) class-attribute instance-attribute
name: str = 'Graph Matérn' class-attribute instance-attribute
__init_subclass__(mutable: bool = False)
replace(**kwargs: Any) -> Self

Replace the values of the fields of the object.

Parameters:

Name Type Description Default
**kwargs Any

keyword arguments to replace the fields of the object.

{}
Returns
Module: with the fields replaced.
replace_meta(**kwargs: Any) -> Self

Replace the metadata of the fields.

Parameters:

Name Type Description Default
**kwargs Any

keyword arguments to replace the metadata of the fields of the object.

{}
Returns
Module: with the metadata of the fields replaced.
update_meta(**kwargs: Any) -> Self

Update the metadata of the fields. The metadata must already exist.

Parameters:

Name Type Description Default
**kwargs Any

keyword arguments to replace the fields of the object.

{}
Returns
Module: with the fields replaced.
replace_trainable(**kwargs: Dict[str, bool]) -> Self

Replace the trainability status of local nodes of the Module.

replace_bijector(**kwargs: Dict[str, tfb.Bijector]) -> Self

Replace the bijectors of local nodes of the Module.

constrain() -> Self

Transform model parameters to the constrained space according to their defined bijectors.

Returns
Module: transformed to the constrained space.
unconstrain() -> Self

Transform model parameters to the unconstrained space according to their defined bijectors.

Returns
Module: transformed to the unconstrained space.
stop_gradient() -> Self

Stop gradients flowing through the Module.

Returns
Module: with gradients stopped.
trainables() -> Self
cross_covariance(x: Num[Array, 'N D'], y: Num[Array, 'M D'])
gram(x: Num[Array, 'N D'])
slice_input(x: Float[Array, '... D']) -> Float[Array, '... Q']

Slice out the relevant columns of the input matrix.

Select the relevant columns of the supplied matrix to be used within the kernel's evaluation.

Parameters:

Name Type Description Default
x Float[Array, '... D']

The matrix or vector that is to be sliced.

required
Returns
Float[Array, "... Q"]: A sliced form of the input matrix.
__add__(other: Union[AbstractKernel, ScalarFloat]) -> AbstractKernel

Add two kernels together. Args: other (AbstractKernel): The kernel to be added to the current kernel.

Returns
AbstractKernel: A new kernel that is the sum of the two kernels.
__radd__(other: Union[AbstractKernel, ScalarFloat]) -> AbstractKernel

Add two kernels together. Args: other (AbstractKernel): The kernel to be added to the current kernel.

Returns
AbstractKernel: A new kernel that is the sum of the two kernels.
__mul__(other: Union[AbstractKernel, ScalarFloat]) -> AbstractKernel

Multiply two kernels together.

Parameters:

Name Type Description Default
other AbstractKernel

The kernel to be multiplied with the current kernel.

required
Returns
AbstractKernel: A new kernel that is the product of the two kernels.
__init__(compute_engine: AbstractKernelComputation = static_field(EigenKernelComputation(), repr=False), active_dims: Optional[List[int]] = static_field(None), name: str = 'Graph Matérn', laplacian: Union[Num[Array, 'N N'], None] = static_field(None), lengthscale: ScalarFloat = param_field(jnp.array(1.0), bijector=tfb.Softplus()), variance: ScalarFloat = param_field(jnp.array(1.0), bijector=tfb.Softplus()), smoothness: ScalarFloat = param_field(jnp.array(1.0), bijector=tfb.Softplus()), eigenvalues: Union[Float[Array, 'N 1'], None] = static_field(None), eigenvectors: Union[Float[Array, 'N N'], None] = static_field(None), num_vertex: Union[ScalarInt, None] = static_field(None)) -> None
__post_init__()
__call__(x: Int[Array, 'N 1'], y: Int[Array, 'N 1'], *, S, **kwargs)

Compute the (co)variance between a vertex pair.

For a graph G={V,E}\mathcal{G} = \{V, E\} where V={v1,v2,vn}V = \{v_1, v_2, \ldots v_n \}, evaluate the graph kernel on a pair of vertices (vi,vj)(v_i, v_j) for any i,j<ni,j<n.

Parameters:

Name Type Description Default
x Float[Array, 'N 1']

Index of the iith vertex.

required
y Float[Array, 'N 1']

Index of the jjth vertex.

required
Returns
ScalarFloat: The value of $k(v_i, v_j)$.