Skip to content

Basis Functions

BasisFunctionComputation

Bases: AbstractKernelComputation

Compute engine class for finite basis function approximations to a kernel.

gram

gram(kernel, x)

For a given kernel, compute Gram covariance operator of the kernel function on an input matrix of shape (N, D).

Parameters:

  • kernel (K) –

    the kernel function.

  • x (Num[Array, 'N D']) –

    the inputs to the kernel function of shape (N, D).

Returns:

  • Dense –

    The Gram covariance of the kernel function as a linear operator.

cross_covariance

cross_covariance(kernel, x, y)

For a given kernel, compute the cross-covariance matrix on an a pair of input matrices with shape (N, D) and (M, D).

Parameters:

  • kernel (K) –

    the kernel function.

  • x (Num[Array, 'N D']) –

    the first input matrix of shape (N, D).

  • y (Num[Array, 'M D']) –

    the second input matrix of shape (M, D).

Returns:

  • Float[Array, 'N M'] –

    The computed cross-covariance of shape (N, M).

diagonal

diagonal(kernel, inputs)

For a given kernel, compute the elementwise diagonal of the NxN gram matrix on an input matrix of shape NxD.

Parameters:

  • kernel (AbstractKernel) –

    the kernel function.

  • inputs (Float[Array, 'N D']) –

    The input matrix.

Returns
Diagonal: The computed diagonal variance entries.

compute_features

compute_features(kernel, x)

Compute the features for the inputs.

Parameters:

  • kernel (K) –

    the kernel function.

  • x (Float[Array, 'N D']) –

    the inputs to the kernel function of shape (N, D).

Returns:

  • Float[Array, 'N L'] –

    A matrix of shape \(N \times L\) representing the random fourier features where \(L = 2M\).

scaling

scaling(kernel)

Compute the scaling factor for the covariance matrix.

Parameters:

  • kernel (K) –

    the kernel function.

Returns:

  • Float[Array, ''] –

    A scalar array representing the scaling factor.