Basis Functions
BasisFunctionComputation
Bases: AbstractKernelComputation
Compute engine class for finite basis function approximations to a kernel.
gram
For a given kernel, compute Gram covariance operator of the kernel function
on an input matrix of shape (N, D)
.
Parameters:
-
kernel
(K
) βthe kernel function.
-
x
(Num[Array, 'N D']
) βthe inputs to the kernel function of shape
(N, D)
.
Returns:
-
Dense
βThe Gram covariance of the kernel function as a linear operator.
cross_covariance
For a given kernel, compute the cross-covariance matrix on an a pair
of input matrices with shape (N, D)
and (M, D)
.
Parameters:
-
kernel
(K
) βthe kernel function.
-
x
(Num[Array, 'N D']
) βthe first input matrix of shape
(N, D)
. -
y
(Num[Array, 'M D']
) βthe second input matrix of shape
(M, D)
.
Returns:
-
Float[Array, 'N M']
βThe computed cross-covariance of shape
(N, M)
.
diagonal
For a given kernel, compute the elementwise diagonal of the NxN gram matrix on an input matrix of shape NxD.
Parameters:
-
kernel
(AbstractKernel
) βthe kernel function.
-
inputs
(Float[Array, 'N D']
) βThe input matrix.
Returns
Diagonal: The computed diagonal variance entries.
compute_features
Compute the features for the inputs.
Parameters:
-
kernel
(K
) βthe kernel function.
-
x
(Float[Array, 'N D']
) βthe inputs to the kernel function of shape
(N, D)
.
Returns:
-
Float[Array, 'N L']
βA matrix of shape \(N \times L\) representing the random fourier features where \(L = 2M\).