Arccosine
ArcCosine
ArcCosine(active_dims=None, order=0, variance=1.0, weight_variance=1.0, bias_variance=1.0, n_dims=None, compute_engine=DenseKernelComputation())
Bases: AbstractKernel
The ArCosine kernel.
This kernel is non-stationary and resembles the behavior of neural networks. See Section 3.1 of Cho and Saul (2011) for additional details.
Parameters:
-
active_dims
(Union[list[int], slice, None]
, default:None
) βThe indices of the input dimensions that the kernel operates on.
-
order
(Literal[0, 1, 2]
, default:0
) βThe order of the kernel. Must be 0, 1 or 2.
-
variance
(Union[ScalarFloat, Variable[ScalarArray]]
, default:1.0
) βThe variance of the kernel Ο.
-
weight_variance
(Union[WeightVarianceCompatible, Variable[WeightVariance]]
, default:1.0
) βThe weight variance of the kernel.
-
bias_variance
(Union[ScalarFloat, Variable[ScalarArray]]
, default:1.0
) βThe bias variance of the kernel.
-
n_dims
(Union[int, None]
, default:None
) βThe number of input dimensions. If
lengthscale
is an array, this argument is ignored. -
compute_engine
(AbstractKernelComputation
, default:DenseKernelComputation()
) βThe computation engine that the kernel uses to compute the covariance matrix.
cross_covariance
Compute the cross-covariance matrix of the kernel.
Parameters:
-
x
(Num[Array, 'N D']
) βthe first input matrix of shape
(N, D)
. -
y
(Num[Array, 'M D']
) βthe second input matrix of shape
(M, D)
.
Returns:
-
Float[Array, 'N M']
βThe cross-covariance matrix of the kernel of shape
(N, M)
.
gram
Compute the gram matrix of the kernel.
Parameters:
-
x
(Num[Array, 'N D']
) βthe input matrix of shape
(N, D)
.
Returns:
-
LinearOperator
βThe gram matrix of the kernel of shape
(N, N)
.
diagonal
Compute the diagonal of the gram matrix of the kernel.
Parameters:
-
x
(Num[Array, 'N D']
) βthe input matrix of shape
(N, D)
.
Returns:
-
Float[Array, ' N']
βThe diagonal of the gram matrix of the kernel of shape
(N,)
.
slice_input
Slice out the relevant columns of the input matrix.
Select the relevant columns of the supplied matrix to be used within the kernel's evaluation.
Parameters:
-
x
(Float[Array, '... D']
) βthe matrix or vector that is to be sliced.
Returns:
-
Float[Array, '... Q']
βThe sliced form of the input matrix.
__add__
Add two kernels together. Args: other (AbstractKernel): The kernel to be added to the current kernel.
Returns:
-
AbstractKernel
(AbstractKernel
) βA new kernel that is the sum of the two kernels.
__mul__
Multiply two kernels together.
Parameters:
-
other
(AbstractKernel
) βThe kernel to be multiplied with the current kernel.
Returns:
-
AbstractKernel
(AbstractKernel
) βA new kernel that is the product of the two kernels.