Powered Exponential
PoweredExponential
PoweredExponential(
active_dims=None,
lengthscale=1.0,
variance=1.0,
power=1.0,
n_dims=None,
compute_engine=DenseKernelComputation(),
)
Bases: StationaryKernel
The powered exponential family of kernels.
Computes the covariance for pairs of inputs with length-scale parameter , and power .
This also equivalent to the symmetric generalized normal distribution. See Diggle and Ribeiro (2007) - "Model-based Geostatistics". and https://en.wikipedia.org/wiki/Generalized_normal_distribution#Symmetric_version
Parameters:
-
active_dims(Union[list[int], slice, None], default:None) βthe indices of the input dimensions that the kernel operates on.
-
lengthscale(Union[LengthscaleCompatible, Variable[Lengthscale]], default:1.0) βthe lengthscale(s) of the kernel β. If a scalar or an array of length 1, the kernel is isotropic, meaning that the same lengthscale is used for all input dimensions. If an array with length > 1, the kernel is anisotropic, meaning that a different lengthscale is used for each input.
-
variance(Union[ScalarFloat, Variable[ScalarArray]], default:1.0) βthe variance of the kernel Ο.
-
power(Union[ScalarFloat, Variable[ScalarArray]], default:1.0) βthe power of the kernel ΞΊ.
-
n_dims(Union[int, None], default:None) βthe number of input dimensions. If
lengthscaleis an array, this argument is ignored. -
compute_engine(AbstractKernelComputation, default:DenseKernelComputation()) βthe computation engine that the kernel uses to compute the covariance matrix.
spectral_density
property
The spectral density of the kernel.
Returns:
-
Normal | StudentTβCallable[[Float[Array, "D"]], Float[Array, "D"]]: The spectral density function.
cross_covariance
Compute the cross-covariance matrix of the kernel.
Parameters:
-
x(Num[Array, 'N D']) βthe first input matrix of shape
(N, D). -
y(Num[Array, 'M D']) βthe second input matrix of shape
(M, D).
Returns:
-
Float[Array, 'N M']βThe cross-covariance matrix of the kernel of shape
(N, M).
gram
Compute the gram matrix of the kernel.
Parameters:
-
x(Num[Array, 'N D']) βthe input matrix of shape
(N, D).
Returns:
-
LinearOperatorβThe gram matrix of the kernel of shape
(N, N).
diagonal
Compute the diagonal of the gram matrix of the kernel.
Parameters:
-
x(Num[Array, 'N D']) βthe input matrix of shape
(N, D).
Returns:
-
Float[Array, ' N']βThe diagonal of the gram matrix of the kernel of shape
(N,).
slice_input
Slice out the relevant columns of the input matrix.
Select the relevant columns of the supplied matrix to be used within the kernel's evaluation.
Parameters:
-
x(Float[Array, '... D']) βthe matrix or vector that is to be sliced.
Returns:
-
Float[Array, '... Q']βThe sliced form of the input matrix.
__add__
Add two kernels together. Args: other (AbstractKernel): The kernel to be added to the current kernel.
Returns:
-
AbstractKernel(AbstractKernel) βA new kernel that is the sum of the two kernels.
__mul__
Multiply two kernels together.
Parameters:
-
other(AbstractKernel) βThe kernel to be multiplied with the current kernel.
Returns:
-
AbstractKernel(AbstractKernel) βA new kernel that is the product of the two kernels.