Skip to content

Dense

DenseKernelComputation

Bases: AbstractKernelComputation

Dense kernel computation class. Operations with the kernel assume a dense gram matrix structure.

gram

gram(kernel: K, x: Num[Array, 'N D']) -> Dense

For a given kernel, compute Gram covariance operator of the kernel function on an input matrix of shape (N, D).

Parameters:

  • kernel (K) –

    the kernel function.

  • x (Num[Array, 'N D']) –

    the inputs to the kernel function of shape (N, D).

Returns:

  • Dense –

    The Gram covariance of the kernel function as a linear operator.

cross_covariance

cross_covariance(
    kernel: K, x: Num[Array, "N D"], y: Num[Array, "M D"]
) -> Float[Array, "N M"]

For a given kernel, compute the cross-covariance matrix on an a pair of input matrices with shape (N, D) and (M, D).

Parameters:

  • kernel (K) –

    the kernel function.

  • x (Num[Array, 'N D']) –

    the first input matrix of shape (N, D).

  • y (Num[Array, 'M D']) –

    the second input matrix of shape (M, D).

Returns:

  • Float[Array, 'N M'] –

    The computed cross-covariance of shape (N, M).

diagonal

diagonal(kernel: K, inputs: Num[Array, 'N D']) -> Diagonal

For a given kernel, compute the elementwise diagonal of the NxN gram matrix on an input matrix of shape (N, D).

Parameters:

  • kernel (K) –

    the kernel function.

  • inputs (Num[Array, 'N D']) –

    the input matrix of shape (N, D).

Returns:

  • Diagonal –

    The computed diagonal variance as a Diagonal linear operator.